پیش بینی دبی جریان رودخانه با استفاده از داده کاوی و سری زمانی

Authors

Abstract:

شبیه­سازی جریان رودخانه به‌منظور آگاهی از دبی رودخانه در دوره‌های زمانی آینده از مسائل مهم و کاربردی است. با توجه به اهمیت اطلاع از دبی جریان در سال­های آینده، در این مطالعه دبی جریان در سه ایستگاه حاجی‌قوشان، قره‌شور و تمر در حوضۀ آبخیز گرگانرود برای سال­های آبی 90-1381 شبیه­سازی شد. به‌منظور شبیه­سازی از روش آماری سری زمانی در قالب الگوی اتورگرسیون (AR) و داده‌کاوی در قالب ماشین بردار پشتیبان (SVM) به دو صورت ماهانه و هفتگی استفاده شد. نتایج در مقیاس ماهانه نشان داد هر دو روش در ایستگاه تمر، دقت کم و در ایستگاه حاجی‌قوشان، دقت خوبی دارند. در ایستگاه قره‌شور SVM توانست ضریب تعیین سری زمانی ماهانه را به‌مقدار 29/0 افزایش و خطای RMSE را 35 درصد کاهش دهد و شبیه­سازی دقیق‌تری انجام دهد. هر دو روش در ایستگاه­های تمر و قره‌شور دبی هفتگی را با دقت کمی پیش‌بینی کردند. در ایستگاه حاجی‌قوشان ضریب تعیین روش سری زمانی هفتگی 91/0 و SVM برابر 86/0 است. آمارۀ DDR نشان داد در ایستگاه حاجی‌قوشان در مقیاس ماهانه روش SVM نسبت به سری زمانی دارای دقت بیشتری است و در مقیاس هفتگی دقت این دو روش برابر است. نتایج این مطالعه نشان داد که روش SVM در هر دو مقیاس ماهانه و هفتگی دقت بیشتری نسبت به سری زمانی دارد؛ همچنین دقت هر دو روش در مقیاس ماهانه بیشتر از مقیاس هفتگی است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی سیلاب از طریق داده های سری زمانی دبی رودخانه سومبار با استفاده از مدل باکس _جنکینز

امروزه یکی از مهمترین مسائل جهت مدیریت سیلاب، پیش بینی جریان رودخانه ها می باشد. جلوگیری از صدمات اقتصادی و جانی ناشی از سیلاب یکی از مهمترین دستاوردهای پیش بینی صحیح جریان می باشد. فاکتورها و عوامل مختلفی بر روی دبی رودخانه تاثیر گذار است که تحلیل این پدیده را مشکل می سازند. مدلهای فیزیکی-مفهومی، رگرسیونی و سری های زمانی از معمولترین روشهای تحلیل جریان رودخانه می باشند در این تحقیق با استفاده ...

full text

پیش بینی سیلاب از طریق داده های سری زمانی دبی رودخانه سومبار با استفاده از مدل باکس _جنکینز

امروزه یکی از مهمترین مسائل جهت مدیریت سیلاب، پیش بینی جریان رودخانه ها می باشد. جلوگیری از صدمات اقتصادی و جانی ناشی از سیلاب یکی از مهمترین دستاوردهای پیش بینی صحیح جریان می باشد. فاکتورها و عوامل مختلفی بر روی دبی رودخانه تاثیر گذار است که تحلیل این پدیده را مشکل می سازند. مدلهای فیزیکی-مفهومی، رگرسیونی و سری های زمانی از معمولترین روشهای تحلیل جریان رودخانه می باشند در این تحقیق با استفاده ...

full text

مدل‌سازی دبی جریان رودخانه با استفاده از مدل‌های چندمتغیره تلفیقی سری زمانی

چکیده بیش از سه دهه است که هیدرولوژیست­ها، استفاده از مدل­های چند متغیره را جهت توصیف و مدل­سازی داده­های پیچیده هیدرولوژی، توصیه می­کنند. درحالی که به تازگی اهمیت مدل­های چند متغیره در هیدرولوژی مطرح شده است. در واقع در مدل­های چند متغیره با دخالت دادن عوامل مؤثر هواشناسی، می­توان نتایج توصیف، مدل­سازی و  پیش­بینی پارامترهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غی...

full text

پیش بینی میزان آلودگی فلزات سنگین در رسوبات رودخانه گرگانرود با استفاده از داده کاوی

به منظور پیش بینی میزان آلودگی فلزات سنگین در رسوبات رودخانه گرگانرود با استفاده از داده کاوی، در طول رودخانه گرگان رود نمونه های رسوبی در دو فصل (بهار و تابستان) و در 10 ایستگاه با سه تکرار نمونه برداری گردید. پس از آنالیز دستگاهی نمونه ها، داده های خام فلزات سنگین جمع آوری شد. سپس روش پیشنهادی مطرح گردید که شامل مراحل شروع و گردآوری داده ها، پیش پردازش داده ها ، ساخت مدل و همچنین ارزیابی و خر...

full text

بهبود پیش بینی دبی جریان با استفاده از داده گواری در مدل مفهومی Hymod

پیش بینی دبی جریان توسط مدل های هیدرولوژی، همواره با عدم قطعیت همراه است. به همین دلیل از روش های مختلف از جمله افزایش کیفیت اطلاعات ورودی به مدل، بهبود ساختار مدل، و داده گواری اطلاعات مشاهداتی در دسترس برای کاهش عدم قطعیت مدل ها استفاده شده است. در صورت بدون اشکال فرض کردن ساختار مدل هیدرولوژی،نمی توان از عدم قطعیت ورودی، پارامتر، و شرایط اولیه مدل چشم پوشی کرد. یکی از روش های کاهش عدم قطعیت،...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 3

pages  167- 179

publication date 2014-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023